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Abstract. The Ginzburg–Landau model is a phenomenological description of

superconductivity. A crucial feature of type-II superconductors is the occurrence

of vortices, which appear above a certain value of the strength of the applied

magnetic field called the first critical field. In this paper we estimate this value,

when the Ginzburg–Landau parameter is large, and we characterize the behavior of

the Meissner solution, the unique vortexless configuration that globally minimizes

the Ginzburg–Landau energy below the first critical field. In addition, we show

that beyond this value, for a certain range of the strength of the applied field,

there exists a unique Meissner-type solution that locally minimizes the energy.
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1. Introduction

1.1. Problem and background. Superconductors are certain metals and alloys,
which, when cooled down below a critical (typically very low) temperature, lose
their resistivity, which allows permanent currents to circulate without loss of en-
ergy. Superconductivity was discovered by H. Kamerlingh Onnes in 1911. As a
phenomenological description of this phenomenon, Ginzburg and Landau [GL50] in-
troduced in 1950 the Ginzburg–Landau model of superconductivity, which has been
proven to effectively predict the behavior of superconductors and that was subse-
quently justified as a limit of the Bardeen–Cooper–Schrieffer (BCS) quantum theory
[BCS57]. It is a model of great importance in physics, with Nobel prizes awarded
for it to Abrikosov, Ginzburg, and Landau.

The Ginzburg–Landau functional, which models the state of a superconducting
sample in an applied magnetic field, assuming that the temperature is fixed and
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below the critical one, is

GLε(u,A) =
1

2

∫
Ω

|∇Au|2 +
1

2ε2
(1− |u|2)2 +

1

2

∫
R3

|H −Hex|2.

Here

• Ω is a bounded domain of R3, that we assume to be simply connected with
C2 boundary.
• u : Ω → C is called the order parameter. Its modulus squared (the density

of Cooper pairs of superconducting electrons in the BCS quantum theory)
indicates the local state of the superconductor: where |u|2 ≈ 1 the material
is in the superconducting phase, where |u|2 ≈ 0 in the normal phase.
• A : R3 → R3 is the electromagnetic vector potential of the induced magnetic

field H = curlA.
• ∇A denotes the covariant gradient ∇− iA.
• Hex : R3 → R3 is a given external (or applied) magnetic field.
• ε > 0 is the inverse of the Ginzburg–Landau parameter usually denoted
κ, a non-dimensional parameter depending only on the material. We will
be interested in the regime of small ε, corresponding to extreme type-II
superconductors.

A key physical feature of this type of superconductors is the occurrence of vortices
(similar to those in fluid mechanics, but quantized), in the presence of an applied
magnetic field. They correspond to the regions where |u| vanishes, and since u is
complex-valued they carry a nonzero integer topological degree. Vortices become co-
dimension 2 topological singularities in the limit ε→ 0, and are the crucial objects
of interest in the analysis of the model.

There are three main critical values or critical fields Hc1 , Hc2 , and Hc3 of the
strength of the applied field Hex, for which phase transitions occur.

• Below Hc1 = O(| log ε|), the superconductor is everywhere in its supercon-
ducting phase, i.e. |u| is uniformly close to 1, and the applied field is expelled
by the material due to the occurrence of supercurrents near ∂Ω. This phe-
nomenon is known as the Meissner effect.
• At Hc1 , the first vortice(s) appear and the applied field penetrates the su-

perconductor through the vortice(s).
• Between Hc1 and Hc2 , the superconducting and normal phases coexist in the

sample. As the strength of the applied field increases, so does the number
of vortices. The vortices repel each other, while the external magnetic field
confines them inside the sample.
• At Hc2 = O

(
1
ε2

)
, the superconductivity is lost in the bulk of the sample.

• Between Hc2 and Hc3 , superconductivity persists only near the boundary.
• Above Hc3 = O

(
1
ε2

)
, the applied magnetic field completely penetrates the

sample and the superconductivity is lost, i.e. u = 0.



ON THE FIRST CRITICAL FIELD IN THREE DIMENSIONAL GINZBURG–LANDAU 3

The Ginzburg–Landau model is known to be a U(1)-gauge theory. This means that
all the meaningful physical quantities are invariant under the gauge transformations

u 7→ ueiφ, A 7→ A+∇φ,

where φ is any real-valued function in H2
loc(R3). The Ginzburg–Landau energy and

its associated free energy

Fε(u,A) =
1

2

∫
Ω

|∇Au|2 +
1

2ε2
(1− |u|2)2 + | curlA|2

are gauge invariant, as well as the density of superconducting Cooper pairs |u|2,
the induced magnetic field H, and the vorticity, defined, for any sufficiently regular
configuration (u,A), as

µ(u,A) = curl(iu,∇Au) + curlA,

where (·, ·) denotes the scalar product in C identified with R2 i.e. (a, b) = ab+ab
2

.
This quantity is the gauge-invariant version of the Jacobian determinant of u and
is the analogue of the vorticity of a fluid. For further physics background on the
model, we refer to [Tin96,DG99].

The main purpose of this paper is to give a precise estimate of Hc1 and to charac-
terize the behavior of global minimizers of GLε below this value in three dimensions.
The analysis of Hc2 or higher applied fields requires completely different techniques.
The interested reader can refer to [GP99,FH10,FK13,FKP13] and references therein.

The first critical field is (rigorously) defined by the fact that below Hc1 global
minimizers of the Ginzburg–Landau functional do not have vortices, while they do
for applied fields whose strength is higher than Hc1 . In the 2D setting, Sandier and
Serfaty (see [Ser99a, SS00, SS03, SS07]) provided an expansion of the first critical
field, up to an error o(1) as ε → 0, and rigorously characterized the behavior of
global minimizers of the Ginzburg–Landau functional below and near this value.
Conversely, in three dimensions much less is known. Recently Baldo, Jerrard, Or-
landi, and Soner [BJOS13], via a Γ-convergence argument, provided the asymptotic
leading order value of the first critical field as ε→ 0 (see also [BJOS12] for related
results). In short, in a uniform applied field, i.e. when Hex = hε~e, where hε ≥ 0
and ~e ∈ R3 is a fixed unit vector, they proved that if (uε, Aε) minimizes GLε(uε, Aε)
then there exists a measure µ0 such that

µ(uε, Aε)

| log ε|
→ µ0 as ε→ 0

in weak sense (the precise type of convergence can be found in [BJOS13, Proposition
1]). Moreover, there exists a constant H∗ such that if limε→0

hε
| log ε| < H∗ then

µ0 ≡ 0, while µ0 6≡ 0 if limε→0
hε
| log ε| > H∗. This result gives Hc1 up to an error

o(| log ε|) as ε→ 0 and agrees with previous work by Alama, Bronsard, and Montero
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[ABM06] in the special case when Ω is a ball. An intermediate situation, when the
superconducting sample is a thin shell, was treated in [Con11].

Before stating our results, let us recall the three dimensional ε-level estimates for
the Ginzburg–Landau functional provided by the author in [Rom19]. These tools
will play a crucial role in this paper.

Theorem 1.1. For any m,n,M > 0 there exist C, ε0 > 0 depending only on
m,n,M, and ∂Ω, such that, for any ε < ε0, if (uε, Aε) ∈ H1(Ω,C) × H1(Ω,R3)
is a configuration such that Fε(uε, Aε) ≤ M | log ε|m then there exists a polyhedral
1-dimensional current νε such that

(1) νε/π is integer multiplicity,
(2) ∂νε = 0 relative to Ω,
(3) supp(νε) ⊂ Sνε ⊂ Ω with |Sνε| ≤ C| log ε|−q, where q(m,n) := 3

2
(m+ n),

(4)

∫
Sνε

|∇Aεuε|2 +
1

2ε2
(1 − |uε|2)2 + | curlAε|2 ≥ |νε|(Ω)

(
log

1

ε
− C log log

1

ε

)
−

C

| log ε|n
,

(5) and for any γ ∈ (0, 1] there exists a constant Cγ depending only on γ and ∂Ω,
such that

‖µ(uε, Aε)− νε‖C0,γ
T (Ω)∗ ≤ Cγ

Fε(uε, Aε) + 1

| log ε|qγ
.

Here and in the rest of the paper, C0,γ
T (Ω) denotes the space of vector fields

Φ ∈ C0,γ(Ω) such that Φ × ν = 0 on ∂Ω, where ν is the outer unit normal to ∂Ω.
The symbol ∗ denotes its dual space.

1.2. Main results. Throughout this article we assume that Hex ∈ L2
loc(R3,R3)

satisfies divHex = 0 in R3. In particular, we deduce that there exists a vector-
potential Aex ∈ H1

loc(R3,R3) such that

curlAex = Hex and divAex = 0 in R3.

Let hex := ‖Hex‖L2(Ω,R3). We define H0,ex := h−1
ex Hex and assume that this vector

field is Hölder continuous in Ω with Hölder exponent β ∈ (0, 1] and Hölder norm
bounded independently of ε. In particular, note that ‖H0,ex‖L2(Ω,R3) = 1. We also
set A0,ex := h−1

ex Aex.
We remark that the divergence-free assumption on the applied magnetic field is

in accordance with the fact that magnetic monopoles do not exist in Maxwell’s
electromagnetism theory.

The natural space for the minimization of GLε in three dimensions is H1(Ω,C)×
[Aex +Hcurl], where

Hcurl := {A ∈ H1
loc(R3,R3) | curlA ∈ L2(R3,R3)}.



ON THE FIRST CRITICAL FIELD IN THREE DIMENSIONAL GINZBURG–LANDAU 5

Let us also introduce the homogeneous Sobolev space Ḣ1(R3,R3), which is defined
as the completion of C∞0 (R3,R3) with respect to the norm ‖∇( · )‖L2(R3,R3). We
observe that, by Sobolev embedding, there exists a constant C > 0 such that

(1.1) ‖A‖L6(R3,R3) ≤ C‖∇A‖L2(R3,R3)

for any A ∈ Ḣ1(R3,R3). Moreover, by [KS91, Proposition 2.4], we have

Ḣ1(R3,R3) = {A ∈ L6(R3,R3) | ∇A ∈ L2(R3,R3)}.

It is also convenient to define the subspace

Ḣ1
div=0 := {A ∈ Ḣ1(R3,R3) | divA = 0 in R3}.

In this subspace, one has

(1.2) ‖A‖Ḣ1
div=0

:= ‖∇A‖L2(R3,R3) = ‖ curlA‖L2(R3,R3).

Let us now define a special vortexless configuration that turns out to be a good
approximation of the so-called Meissner solution, i.e. the vortexless global minimizer
of the Ginzburg–Landau energy below the first critical field, which, as we shall
see, is unique up to a gauge transformation. By recalling that any vector field
A ∈ H1(Ω,R3) can be decomposed as (see Lemma 2.2)

A = curlBA +∇φA in Ω
BA × ν = 0 on ∂Ω
∇φA · ν = A · ν on ∂Ω

with BA ∈ {B ∈ H2(Ω,R3) | divB = 0 in Ω} and φA ∈ {φ ∈ H2(Ω) |
∫

Ω
φA = 0},

we consider the pair (u0, hexA0), where u0 = eihexφA0 and A0 is the unique minimizer
(in a suitable space) of the functional

J(A) =
1

2

∫
Ω

| curlBA|2 +
1

2

∫
R3

| curl(A− A0,ex)|2.

This special configuration satisfies the following properties:

• GLε(u0, hexA0) = h2
exJ(A0).

• |u0| = 1 and µ(u0, hexA0) = 0 in Ω.
• H0 = curlA0 satisfies the usually called London equation

curl2(H0 −H0,ex) +H0χΩ = 0 in R3,

where χΩ denotes the characteristic function of Ω.
• The divergence-free vector field B0 = BA0 ∈ C

2,β
T (Ω,R3) satisfies{

−∆B0 +B0 = H0,ex in Ω
B0 × ν = 0 on ∂Ω.

This vector field is the analog of the function ξ0, considered by Sandier and
Serfaty in the analysis of the first critical field in 2D (see [Ser99a, Ser99b,
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SS00,SS03,SS07]). We shall see that B0 plays an important role in our three
dimensional analysis.

In addition, this pair allows us to split the Ginzburg–Landau energy of a given
configuration (u,A). More precisely, by writing u′ = u−1

0 u and A′ = A− hexA0, one
can prove that (see Proposition 3.1)

GLε(u,A) = h2
exJ(A0) + Fε(u

′, A′) +
1

2

∫
R3\Ω
| curlA′|2 − hex

∫
Ω

µ(u′, A′) ∧B0 +R0,

where R0 = o(1), in particular, when hex is bounded above by a positive power of
| log ε|. Let us emphasize that one of the achievements of this paper is to find the
right pair (u0, hexA0) to split the energy, which then allows to implement (almost)
the same strategies as in 2D.

By combining this splitting with the optimal ε-level estimates of Theorem 1.1, we
find

GLε(u,A) ≥ h2
exJ(A0) +

1

2
|ν ′ε|(Ω)

(
log

1

ε
− C log log

1

ε

)
− hex

∫
Ω

ν ′ε ∧B0 + o(1),

where ν ′ε denotes the 1-current associated to (u′, A′) by Theorem 1.1. By construc-
tion of ν ′ε (see [Rom19, Section 5.2]), we can write

ν ′ε =
∑
i∈Iε

2πΓεi ,

where the sum is understood in the sense of currents, Iε is a finite set of indices, and
Γεi is an oriented Lipschitz curve in Ω with multiplicity 1. Each of these curves, which
are non-necessarily distinct, does not self intersect and is either a loop contained in
Ω or has two different endpoints on ∂Ω. We will denote by X the class of Lipschitz
curves, seen as 1-currents, described here.

Inserting this expression in the previous inequality, allows us to heuristically derive
the leading order of the first critical field:

H0
c1

:=
1

2‖B0‖∗
| log ε|,

where

(1.3) ‖B0‖∗ := sup
Γ∈X

1

|Γ|(Ω)

∫
Ω

Γ ∧B0
1.

We may now state our first result, that characterizes the behavior of global min-
imizers of GLε below H0

c1
. In the 2D setting, an analogous result was proved by

Sandier and Serfaty (see [SS00, Theorem 1]).

1The notation used here is explained in the preliminaries (see Section 2).
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Theorem 1.2. There exist constants ε0, K0 > 0 such that for any ε < ε0 and hex ≤
H0
c1
−K0 log | log ε|, the global minimizers (uε, Aε) of GLε in H1(Ω,C)× [Aex +Hcurl]

are vortexless configurations such that, as ε→ 0,

• ‖1− |uε|‖L∞(Ω,C) = o(1),
• ‖µ(uε, Aε)‖C0,γ

T (Ω)∗ = o(1) for any γ ∈ (0, 1], and

• h2
exJ(A0) + o(1) ≤ GLε(uε, Aε) ≤ h2

exJ(A0).

It is important to mention that in the proof of this theorem we use the fact
that solutions of the Ginzburg–Landau equations (see Section 2.3), in the Coulomb
gauge, satisfy a clearing-out result proved by Chiron [Chi05]. Roughly speaking,
this states that if the energy of a solution in a ball (with center in Ω) intersected
with Ω is sufficiently small, then |u| is uniformly away from 0 in a ball of half radius
intersected with Ω. The proof given by Chiron relies on monotonicity formulas, and
is very much inspired by previous work by Bethuel, Orlandi, and Smets [BOS04].
The interested reader can refer to [Riv95, LR99, LR01, BBO01, SS17] for results in
the same spirit.

Our second result provides bounds from above and below for the first critical field
in three dimensions.

Theorem 1.3. There exist constants ε0, K0 > 0 such that for any ε < ε0 we have

H0
c1
−K0 log | log ε| ≤ Hc1 .

Moreover, if there exists a multiplicity 1 rectifiable 1-current Γ1 with ∂Γ1 = 0 relative
to Ω such that

‖B0‖∗ =
1

|Γ1|(Ω)

∫
Ω

Γ1 ∧B0,

then there exist constants ε1, K1 > 0 such that for any ε < ε1 we have

Hc1 ≤ H0
c1

+K1.

Remark 1.1. In the special case Ω = B(0, R) and H0,ex = ẑ in B(0, R), ‖B0‖∗ is
achieved by the vertical diameter seen as a 1-current with multiplicity 1 and oriented
in the direction of positive z axis; see Proposition 4.1. In particular, in this case the
hypothesis of this theorem is satisfied by a curve which belongs to X.

Remark 1.2. These inequalities show that indeed H0
c1

is the leading order of Hc1 as
ε→ 0. Of course this agrees with the previously mentioned result by Baldo, Jerrard,
Orlandi, and Soner. The author strongly believes that, as ε→ 0,

Hc1 = H0
c1

+O(1).

To prove this result, one needs to avoid the uncertainty of order O(log | log ε|) in
the statement of Theorem 1.2. To accomplish this, it is crucially important to char-
acterize, near the first critical field, the behavior of the vorticity µ(u,A) of global
minimizers of GLε. We plan to address this problem in future work.
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Our next result shows that beyond the first critical field there exists a locally
minimizing vortexless configuration. A similar result was proved by Serfaty in 2D
(see [Ser99b, Theorem 1]).

Theorem 1.4. Let α ∈
(
0, 1

3

)
. There exists ε0 > 0 such that for any ε < ε0 if

hex ≤ ε−α then there exists a vortexless configuration (uε, Aε) = (u0u
′
ε, hexA0 +A′ε) ∈

H1(Ω,C)× [Aex + Ḣ1
div=0], which locally minimizes GLε in H1(Ω,C)× [Aex +Hcurl]

and satisfies the following properties as ε→ 0:

(1) ‖1− |uε|‖L∞(Ω,C) = o(1).
(2) h2

exJ(A0) + o(1) ≤ GLε(uε, Aε) ≤ h2
exJ(A0).

(3) The configuration (u′ε, A
′
ε) satisfies

inf
θ∈[0,2π]

‖u′ε − eiθ‖H1(Ω,C) + ‖A′ε‖Ḣ1
div=0

= o(1).

(4) Up to a gauge transformation, (uε, Aε) converges to (u0, hexA0). More precisely,
we have

inf
θ∈[0,2π]

‖uε − eiθu0‖H1(Ω,C) + ‖Aε − hexA0‖Ḣ1
div=0

= o(1).

Let us point out that in Remark 5.1 we explain why we require α < 1
3
.

Our last result concerns the uniqueness, up to a gauge transformation, of locally
minimizing vortexless configurations.

Theorem 1.5. Let α, c ∈ (0, 1). There exists ε0 > 0 such that, for any ε < ε0, if
hex ≤ ε−α then a configuration (u,A) = (u0u

′, hexA0 + A′) which locally minimizes
GLε in H1(Ω,C)× [Aex +Hcurl] and satisfies |u| ≥ c and Fε(u

′, A′) ≤ ε1+δ for some
δ > 0, is unique up to a gauge transformation.

Remark 1.3. The assumption that Fε(u
′, A′) ≤ ε1+δ for some δ > 0 plays a crucial

role in the proof of this result. In Proposition A.2, we prove that if α ∈
(
0, 1

4

)
then this condition is implied by the other assumptions of this theorem provided that
GLε(u,A) ≤ GLε(u0, hexA0) = h2

exJ(A0), i.e. uniqueness holds without assuming
that Fε(u

′, A′) ≤ ε1+δ for some δ > 0 if the Ginzburg–Landau energy of the vortexless
local minimizer is below the energy of (u0, hexA0). We observe that this condition is
satisfied by the locally minimizing solution of Theorem 1.4.

Let us also note that if α ≥ 1
4

then the strategy of the proof of Proposition A.2 fails.
For this reason, we are able to guaranty the uniqueness of the locally minimizing
vortexless configuration of Theorem 1.4 only if α < 1

4
.

Finally, let us emphasize that this uniqueness result allows to conclude that the
locally minimizing configuration of Theorem 1.4 is, indeed, up to a gauge transfor-
mation, the unique global minimizer of the Ginzburg–Landau energy below the first
critical field. Therefore Theorem 1.4, in particular, provides a detailed characteri-
zation of the behavior of the Meissner solution.
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Thus, we prove that below the first critical field, up to a gauge transformation,
the Meissner solution is the unique global minimizer of GLε. Beyond this value,
at least up to hex = o(ε−

1
3 ), a Meissner-type solution continues to exists as a local

minimizer of the Ginzburg–Landau energy. This solution is unique, up to a gauge
transformation, at least up to hex = o(ε−

1
4 ). Since this branch of vortexless solutions

remains stable, in the process of raising hex vortices should not appear at Hc1 ,
but rather at a critical value of hex called the superheating field Hsh, at which the
Meissner-type solution becomes unstable. It is expected that Hsh = O(ε−1). The
interested reader can refer to [Xia16] and references therein for further details.

Outline of the paper. The rest of the paper is organized as follows. In Section 2
we introduce some basic quantities and notation, describe two Hodge-type decom-
positions, and present some classical results in Ginzburg–Landau theory. In Section
3 we define the approximation of the Meissner solution, split the Ginzburg–Landau
energy, and prove Theorem 1.2. In Section 4 we present the proof of Theorem 1.3
and compute ‖B0‖∗ in a special case. Section 5 contains the proof of Theorem 1.4
and Section 6 the proof of Theorem 1.5. Appendix A is devoted to prove some
improved estimates for locally minimizing configurations, that allow to obtain the
uniqueness of the Meissner-type solution of Theorem 1.4 for α < 1

4
, as a consequence

of Theorem 1.5.

2. Preliminaries

2.1. Some definitions and notation. We define the superconducting current of
a pair (u,A) ∈ H1(Ω,C)×H1(Ω,R3) as the 1-form

j(u,A) = (iu, dAu) =
3∑

k=1

(iu, ∂ku− iAku)dxk.

It is related to the vorticity µ(u,A) of a configuration (u,A) through

µ(u,A) = dj(u,A) + dA.

This quantity can be seen as a 1-current, which is defined through its action on
1-forms by the relation

µ(u,A)(φ) =

∫
Ω

µ(u,A) ∧ φ.

We recall that the boundary of a 1-current T relative to a set Θ, is the 0-current
∂T defined by

∂T (φ) = T (dφ)

for all smooth compactly supported 0-form φ defined in Θ. In particular, µ(u,A)
has zero boundary relative to Ω. We denote by |T |(Θ) the mass of a 1-current T in
Θ.
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2.2. Hodge-type decompositions. Next, we provide a decomposition of vector
fields in Hcurl.

Lemma 2.1. Every vector field A ∈ Hcurl can be decomposed as

A = curlB +∇Φ,

where B, curlB ∈ Ḣ1
div=0 and Φ ∈ H2

loc(R3).

Proof. First, let us observe that there exists a function Φ1 ∈ H2
loc(R3,R3) such that

∆Φ1 = divA ∈ L2
loc(R3,R3).

Second, we consider the problem{
curl2B = curlA ∈ L2(R3,R3)

divB = 0.

By observing that curl2B = −∆B, [KS91, Theorem 1] provides the existence of a
solution B ∈ Ḣ1

div=0 to this problem such that curlB ∈ Ḣ1
div=0.

Finally, by noting that

curl(A−∇Φ1 − curlB) = div(A−∇Φ1 − curlB) = 0,

we deduce that

A−∇Φ1 − curlB = ∇Φ2

for some harmonic function Φ2 ∈ H2
loc(R3,R3). By writing Φ = Φ1 + Φ2, we obtain

the result. �

We now recall a decomposition of vector fields in H1(Ω,R3). The proof of this
result can be found in [BBO01, Appendix A].

Lemma 2.2. There exists a constant C = C(Ω) such that for every A ∈ H1(Ω,R3)
there exist a unique vector field BA ∈ {B ∈ H2(Ω,R3) | divB = 0 in Ω} and a
unique function φA ∈ {φ ∈ H2(Ω) |

∫
Ω
φA = 0} satisfying

A = curlBA +∇φA in Ω
BA × ν = 0 on ∂Ω
∇φA · ν = A · ν on ∂Ω.

Moreover,

‖BA‖H2(Ω,R3) ≤ C‖ curlA‖L2(Ω,R3) and ‖φA‖H2(Ω) ≤ C‖A‖H1(Ω,R3).
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2.3. Ginzburg–Landau equations.

Definition 2.1 (Critical point of GLε). We say that (u,A) ∈ H1(Ω,C)×[Aex+Hcurl]
is a critical point of GLε if for every smooth configuration (v,B) with B compactly
supported in R3 we have

d

dt
GLε(u+ tv, A+ tB)|t=0 = 0.

We now present the Euler-Lagrange equations satisfied by critical points of GLε.
This is a well-known result, but for the sake of completeness we prove it here.

Proposition 2.1 (Ginzburg–Landau equations). If (u,A) ∈ H1(Ω,C)×[Aex+Hcurl]
is a critical point of GLε then (u,A) satisfies the system of equations

(GL)


−(∇A)2u =

1

ε2
u(1− |u|2) in Ω

curl(H −Hex) = (iu,∇Au)χΩ in R3

∇Au · ν = 0 on ∂Ω
[H −Hex]× ν = 0 on ∂Ω,

where χΩ is the characteristic function of Ω, [ · ] denotes the jump across ∂Ω, ∇Au ·
ν =

∑3
j=1(∂ju− iAju)νj, and the covariant Laplacian (∇A)2is defined by

(∇A)2u = (div−iA·)∇Au.

Proof. We have

d

dt
GLε(u+ tv, A)|t=0 =

∫
Ω

(∇Au,∇Av)− 1

ε2

∫
Ω

(u, v)(1− |u|2).

By noting that

(∇Au,∇Av) = div(∇Au, v)− ((∇A)2u, v),

where (∇Au, v) = ((∂1u−iA1u, v), (∂2u−iA2u, v), (∂3u−iA3u, v)), and by integrating
by parts, we obtain

d

dt
GLε(u+ tv, A)|t=0 =

∫
∂Ω

(∇Au · ν, v)−
∫

Ω

((∇A)2u, v)− 1

ε2

∫
Ω

(u, v)(1− |u|2).

Since this is true for any v, we find

−(∇A)2u =
1

ε2
u(1− |u|2) in Ω and ∇Au · ν = 0 on ∂Ω.

On the other hand, we have

d

dt
GLε(u,A+ tB)|t=0 = −

∫
Ω

(iBu,∇Au) +

∫
R3

(H −Hex) · curlB = 0.

By integration by parts, we get

(2.1)
d

dt
GLε(u,A+ tB)|t=0 = −

∫
Ω

(iu,∇Au) ·B +

∫
R3

curl(H −Hex) ·B = 0.
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We deduce that
curl(H −Hex) = (iu,∇Au)χΩ in R3.

By testing this equation against BχΩ and integrating by parts, we find∫
Ω

(H −Hex) · curlB −
∫
∂Ω

((H −Hex)× ν) ·B −
∫

Ω

(iu,∇Au) ·B = 0.

Now, by testing against BχR3\Ω and integrating by parts, we get∫
R3\Ω

(H −Hex) · curlB +

∫
∂(R3\Ω)

((H −Hex)× ν) ·B = 0.

Thus ∫
∂Ω

([H −Hex]× ν) ·B = 0,

which implies that [H −Hex]× ν = 0 on ∂Ω. �

Remark 2.1. By taking B = curlX in (2.1) with X ∈ C∞0 (Ω,R3) and integrating
by parts, we find

−
∫

Ω

(µ(u,A)−H) ·X +

∫
Ω

curl2(H −Hex) ·X = 0.

Doing the same with X ∈ C∞0 (R3 \ Ω,R3), we get∫
R3\Ω

curl2(H −Hex) ·X = 0.

We then deduce that H and µ(u,A) satisfy (in the sense of currents) the London
equation

(2.2) curl2(H −Hex) +HχΩ = µ(u,A)χΩ.

We will come back to this equation later on.

2.4. Minimization of GLε.

Proposition 2.2. The minimum of GLε over H1(Ω,C)× [Aex +Hcurl] is achieved.

Proof. Let {(ũn, Ãn)}n be a minimizing sequence for GLε in H1(Ω,C)× [Aex +Hcurl].
Lemma 2.1 yields a gauge transformed sequence {(un, An)}n such that An ∈ [Aex +
Ḣ1

div=0]. In particular, we have that GLε(ũn, Ãn) = GLε(un, An) and

‖∇(An − Aex)‖L2(R3,R3) = ‖ curl(An − Aex)‖L2(R3,R3).

Using the bound GLε(un, An) ≤ C, where C is independent of n, we find that

‖1− |un|2‖L2(Ω,C), ‖∇Anun‖L2(Ω,C3), and ‖ curl(An − Aex)‖L2(R3,R3)

are bounded independently of n. Therefore, by recalling (1.1), we deduce that
An − Aex is bounded in Ḣ1(R3,R3). Because {un}n is bounded in L4(Ω) we find
that {iAnun}n is bounded in L2(Ω,C3). By noting that ∇un = ∇Anun + iAnun, we
conclude that un is bounded in H1(Ω,C).
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We may then extract a subsequence, still denoted {(un, An)}n, such that {(un, An−
Aex)}n converges to some (u,A−Aex) weakly in H1(Ω,C)× Ḣdiv=0 and, by compact
Sobolev embedding, strongly in every Lq(Ω,C)× Lq(Ω,R3) for q < 6.

Let us now show that (u,A) is a minimizer of GLε. By strong L4(Ω,C) conver-
gence,

lim inf
n
‖1− |un|2‖L2(Ω,C) = ‖1− |u|2‖L2(Ω,C).

Also, by weak Ḣ1(R3,R3) convergence, we have

lim inf
n
‖ curl(An − Aex)‖L2(R3,R3) = lim inf

n
‖∇(An − Aex)‖L2(R3,R3)

≥ ‖∇(A− Aex)‖L2(R3,R3) = ‖ curl(A− Aex)‖L2(R3,R3).

Moreover, standard arguments show that

lim inf
n
‖∇Anun‖2

L2(Ω,C3) = lim inf
n
‖∇un‖2

L2(Ω,C3) − 2

∫
Ω

(∇un, iAnun) + ‖Anun‖L2(Ω,C3)

≥ ‖∇Au‖L2(Ω,C3).

Hence

lim inf
n

GLε(uε, Aε) ≥ GLε(u,A).

�

3. Global minimizers below H0
c1

3.1. An approximation of the Meissner solution. Next, we find a configuration
(u0, hexA0) with |u0| = 1 and which satisfies (2.2) with zero right-hand side. As
mentioned in the introduction, this turns out to be a good approximation of the
Meissner solution, the vortexless configuration which minimizes GLε below the first
critical field.

Let us consider a configuration of the form (eiφ0 , hexA0) with φ0 ∈ H2(Ω) and
A0 ∈ A0,ex + Ḣ1

div=0. Observe that, by using Lemma 2.2 and letting u0 := eiφ0 , we
have

GLε(u0, hexA0) =
1

2

∫
Ω

|∇φ0 − hex(curlBA0 +∇φA0)|2 +
1

2

∫
R3

|hex curlA0 −Hex|2

=
1

2

∫
Ω

|∇(φ0 − hexφA0)|2 + h2
ex| curlBA0|2 +

h2
ex

2

∫
R3

| curl(A0 − A0,ex)|2.

By choosing φ0 = hexφA0 , we obtain

GLε(u0, hexA0) =
h2

ex

2

∫
Ω

| curlBA0|2 +
h2

ex

2

∫
R3

| curl(A0 − A0,ex)|2 =: h2
exJ(A0).

We let A0 to be the minimizer of J in the space
(
A0,ex + Ḣ1

div=0, ‖ · ‖Ḣ1
div=0

)
, whose

existence and uniqueness follows by noting that J is continuous, coercive, and strictly
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convex in this Hilbert space (recall (1.1) and (1.2)). We also let H0 = curlA0 and
here and in the rest of the paper we use the notation B0 := BA0 .

Let us observe that, by minimality of A0 and Lemma 2.2, we have
(3.1)

J(A0) ≤ J(A0,ex) =
1

2

∫
Ω

| curlBA0,ex|2 ≤ C

∫
Ω

| curlA0,ex|2 = C

∫
Ω

|H0,ex|2 = C.

One can easily check that, for any A ∈ Ḣ1
div=0, we have∫

Ω

curlB0 · curlBA +

∫
R3

(H0 −H0,ex) · curlA = 0.

Because ∫
Ω

curlB0 · ∇φA =

∫
Ω

B0 · curl∇φA −
∫
∂Ω

(B0 × ν) · ∇φA = 0,

we have

(3.2)

∫
Ω

curlB0 · A+

∫
R3

(H0 −H0,ex) · curlA = 0.

Moreover, Lemma 2.1 implies that this equality also holds for any A ∈ Hcurl.

Let us observe that, for any A ∈ C∞0 (R3,R3), by integration by parts, we have∫
Ω

curlB0 · A+

∫
R3

curl(H0 −H0,ex) · A = 0.

Therefore, A0 satisfies the Euler-Lagrange equation

(3.3) curl(H0 −H0,ex) + curlB0χΩ = 0 in R3.

In addition, it is easy to see that the boundary condition [H0 − H0,ex] × ν = 0 on
∂Ω holds.

Arguing as in Remark 2.1, we find

curl2(H0 −H0,ex) +H0χΩ = 0 in R3,

namely (up to multiplying by hex) (2.2) with µ(u0, A0) = 0.

On the other hand, by integration by parts, for any vector field B ∈ C∞0 (Ω,R3),
we have ∫

Ω

B0 · curlB +

∫
Ω

(H0 −H0,ex) · curlB = 0.

Besides, for any function φ ∈ C∞0 (Ω), we have∫
Ω

(B0 + (H0 −H0,ex)) · ∇φ = −
∫

Ω

div(B0 + (H0 −H0,ex))φ = 0.
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Then, given any vector field A ∈ C∞0 (Ω,R3), by taking B = BA and φ = φA in the
previous equalities, we find∫

Ω

(B0 + (H0 −H0,ex)) · (curlBA +∇φA) =

∫
Ω

(B0 + (H0 −H0,ex)) · A = 0.

Hence, the divergence-free vector field B0 weakly solves the problem

(3.4)

{
−∆B0 +B0 = H0,ex in Ω

B0 × ν = 0 on ∂Ω.

Remark 3.1. Since we assume that ‖H0,ex‖C0,β(Ω,R3) ≤ C, by standard elliptic reg-

ularity theory, we deduce that B0 ∈ C2,β
T (Ω,R3) with ‖B0‖C2,β

T (Ω,R3) ≤ C for some

constant independent of ε. In addition, if the applied field is taken to be uniform in
Ω, i.e. if H0,ex is a fixed unit vector in Ω, then B0 depends on the domain Ω only.

3.2. Energy-splitting. Next, by using the approximation of the Meissner solution,
we present a splitting of GLε.

Proposition 3.1. For any (u,A) ∈ H1(Ω,C) × [Aex + Hcurl], letting u = u0u
′ and

A = hexA0 + A′, where (u0, hexA0) is the approximation of the Meissner solution,
we have
(3.5)

GLε(u,A) = h2
exJ(A0) + Fε(u

′, A′) +
1

2

∫
R3\Ω
| curlA′|2 − hex

∫
Ω

µ(u′, A′) ∧B0 +R0,

where Fε(u
′, A′) is the free energy of the configuration (u′, A′) ∈ H1(Ω,C) × Hcurl,

i.e.

Fε(u
′, A′) =

1

2

∫
Ω

|∇A′u
′|2 +

1

2ε2
(1− |u′|2)2 + | curlA′|2

and

R0 =
h2

ex

2

∫
Ω

(|u|2 − 1)| curlB0|2.

In particular, |R0| ≤ Cεh2
exEε(|u|)

1
2 with Eε(|u|) =

1

2

∫
Ω

|∇|u||2 +
1

2ε2
(1− |u|2)2.

Proof. One immediately checks that A′ ∈ Hcurl. Since u′ = u−1
0 u = e−ihexφ0u and

φ0 ∈ H2(Ω), by Sobolev embedding we deduce that u′ ∈ H1(Ω,C).
Writing u = u0u

′ and A = hexA0 + A′ and plugging them into GLε(u,A), we
obtain

GLε(u,A) =
1

2

∫
Ω

|∇A′u
′ − ihex curlB0u

′|2 +
1

2ε2
(1− |u′|2)2

+
1

2

∫
R3

| curlA′ + hex(H0 −H0,ex)|2.
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By expanding the square terms, we get

GLε(u,A) =
1

2

∫
Ω

|∇A′u
′|2+h2

ex| curlB0|2|u′|2−2hex(∇A′u
′, iu′)·curlB0+

1

2ε2
(1−|u′|2)2

+
1

2

∫
R3

| curlA′|2 + h2
ex|H0 −H0,ex|2 + 2hex curlA′ · (H0 −H0,ex).

Observe that, by (3.2), we have∫
R3

curlA′ · (H0 −H0,ex) = −
∫

Ω

A′ · curlB0.

Therefore, grouping terms and writing |u′|2 as 1 + (|u′|2 − 1), we find

GLε(u,A) = h2
exJ(A0)+Fε(u

′, A′)+
1

2

∫
R3\Ω
| curlA′|2−hex

∫
Ω

(j(u′, A′)+A′)·curlB0+R0.

Then, an integration by parts yields∫
Ω

(j(u′, A′) + A′) · curlB0 =

∫
Ω

µ(u′, A′) ∧B0 −
∫
∂Ω

(j(u′, A′) + A′) · (B0 × ν).

By using the boundary condition B0 × ν = 0 on ∂Ω, we find (3.5). The inequality
for R0 follows directly from the Cauchy-Schwarz inequality. �

Remark 3.2. Let ϕ ∈ C0,1
T (Ω) be a 1-form. Observe that, by gauge invariance and

by integration by parts, we have∫
Ω

µ(u,A)∧ϕ =

∫
Ω

µ(u′, A′+hex curlB0)∧ϕ =

∫
Ω

µ(u′, A′)∧ϕ+hex(1−|u|2) curlB0·curlϕ.

Then, the Cauchy-Schwarz inequality yields

‖µ(u,A)− µ(u′, A′)‖C0,1
T (Ω)∗ ≤ CεhexEε(|u|)

1
2 .

Moreover, arguing as in the proof of the vorticity estimate in Theorem 1.1 for γ ∈
(0, 1) (see [Rom19, Section 8]), we conclude that, for any γ ∈ (0, 1),

‖µ(u,A)− µ(u′, A′)‖C0,γ
T (Ω)∗ ≤ C (Fε(u,A) + Fε(u

′, A′))
1−γ

(εhexEε(|u|)
1
2 )γ.

3.3. Proof of Theorem 1.2.

Proof. Proposition 3.1 yields

(3.6) GLε(uε, Aε) ≥ h2
exJ(A0) + Fε(u

′
ε, A

′
ε)− hex

∫
Ω

µ(u′ε, A
′
ε) ∧B0 + o(ε

1
2 ),

where (uε, Aε) = (u0u
′
ε, hexA0 + A′ε).

Step 1. Estimating Fε(u
′
ε, A

′
ε). By minimality, we have

(3.7) inf
(u,A)∈H1(Ω,C)×[Aex+Hcurl]

GLε(u,A) ≤ GLε(u0, hexA0) = h2
exJ(A0).
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On the other hand, by gauge invariance, we get

Fε(u
′
ε, A

′
ε) = Fε(uε, Aε − hex curlB0) ≤ 2Fε(uε, Aε) + 2Fε(1, hex curlB0)

≤ 2Fε(uε, Aε) + Ch2
ex,

which combined with (3.7) and (3.1) implies that Fε(u
′
ε, A

′
ε) ≤ M | log ε|2. We may

then apply Theorem 1.1 (with n large enough) to obtain

Fε(u
′
ε, A

′
ε)− hex

∫
Ω

µ(u′ε, A
′
ε) ∧B0 ≥

1

2
|ν ′ε|(Ω)

(
log

1

ε
− C log log

1

ε

)
− hex

∫
Ω

ν ′ε ∧B0 + o(| log ε|−2),

where C > 0 is a universal constant and ν ′ε denotes the polyhedral 1-dimensional
current associated to the configuration (u′ε, A

′
ε) by Theorem 1.1. By noting that

(3.8)

∫
Ω

ν ′ε ∧B0 ≤ |ν ′ε|(Ω)‖B0‖∗,

we find

Fε(u
′
ε, A

′
ε)− hex

∫
Ω

µ(u′ε, A
′
ε) ∧B0 ≥

1

2
|ν ′ε|(Ω)

(
log

1

ε
− C log log

1

ε
− 2‖B0‖∗hex

)
+ o(| log ε|−2).

Writing hex = H0
c1
−K0 log | log ε| with H0

c1
=

1

2‖B0‖∗
| log ε|, we get

GLε(uε, Aε) ≥ h2
exJ(A0) +

1

2
|ν ′ε|(Ω) (2‖B0‖∗K0 − C) log log

1

ε
+ o(| log ε|−2).

Combining with (3.7), we deduce that

o(| log ε|−2) ≥ |ν ′ε|(Ω) (2‖B0‖∗K0 − C) log log
1

ε
.

Therefore, by letting K0 := (2‖B0‖∗)−1C + 1, we deduce that |ν ′ε|(Ω) = o(| log ε|−2).
In particular, from the vorticity estimate in Theorem 1.1 and (3.8), we deduce that
hex

∫
Ω
µ(u′ε, A

′
ε)∧B0 = o(| log ε|−1). Therefore, inserting in (3.6) and using (3.7), we

are led to

(3.9) Fε(u
′
ε, A

′
ε) +

1

2

∫
R3\Ω
| curlA′ε|2 ≤ o(| log ε|−1).

In particular, we deduce that GLε(uε, Aε) = h2
exJ(A0) + o(| log ε|−1).

Let us also observe that, since |ν ′ε|(Ω) = o(| log ε|−2), from the vorticity estimate
in Theorem 1.1 and Remark 3.2, one immediately deduces that, for any γ ∈ (0, 1],

(3.10) ‖µ(uε, Aε)‖C0,γ
T (Ω)∗ → 0 as ε→ 0.
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Step 2. Applying a clearing out result. To prove that ‖1 − |uε|‖L∞(Ω,C) → 0
as ε→ 0, we use a clearing out result. Let us define

vε := e−iϕεu′ε and Xε := A′ε −∇ϕε,

where ϕε satisfies {
∆ϕε = divA′ε in Ω

∇ϕε · ν = A′ε · ν on ∂Ω.

This implies that Xε is in the Coulomb gauge, i.e. it satisfies

(3.11)

{
divXε = 0 in Ω
Xε · ν = 0 on ∂Ω.

Since the configuration (uε, Aε) minimizes GLε in H1(Ω,C)×[Aex+Hcurl], it satisfies
the Ginzburg–Landau equations (GL). By observing that the configurations (uε, Aε)
and (vε, Xε + hex curlB0) are gauge equivalent in Ω, we deduce that vε satisfies{

−(∇Xε+hex curlB0)2vε =
1

ε2
vε(1− |vε|2) in Ω

∇Xε+hex curlB0vε · ν = 0 on ∂Ω.

Expanding the covariant Laplacian, and using (3.11) and curlB0 · ν = 0 on ∂Ω,
which follows from B0 × ν = 0 on ∂Ω, one can rewrite this problem in the form

(3.12)

{
−∆vε + i| log ε|c(x) · ∇vε + | log ε|2d(x)vε =

1

ε2
vε(1− |vε|2) in Ω

∇vε · ν = 0 on ∂Ω,

where

c(x) :=
2(Xε + hex curlB0)

| log ε|
and d(x) :=

|Xε + hex curlB0|2

| log ε|2
.

By Remark 3.1 and by standard elliptic regularity theory for solutions of the Ginzburg–
Landau equations in the Coulomb gauge, we have

(3.13) ‖c‖L∞(Ω,R3), ‖∇c‖L∞(Ω,R3×3), ‖d‖L∞(Ω), ‖∇d‖L∞(Ω) ≤ Λ0

for some constant Λ0 > 0 independent of ε.
In addition, by gauge invariance, we have

F (u′ε, A
′
ε) = Fε(vε, Xε).

Since (vε, Xε) is in the Coulomb gauge, we have

Eε(vε) := Fε(vε, 0) ≤ CFε(vε, Xε)

for some universal constant C > 0. We define aε(x) = 1−d(x)ε2| log ε|2 and observe
that

Ẽε(vε) :=
1

2

∫
Ω

|∇vε|2 +
1

2ε2
(aε(x)− |vε|2)2 ≤ Eε(vε) +O(ε| log ε|2).
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This combined with (3.9), implies that

(3.14) Ẽε(vε) = o(| log ε|−1).

Finally, from (3.11), (3.12), (3.13), and (3.14), we conclude that all the hypotheses
of [Chi05, Theorem 3] are fulfilled, and therefore

‖1− |uε|‖L∞(Ω,C) = ‖1− |vε|‖L∞(Ω,C) → 0 as ε→ 0.

It is worth mentioning that one can also obtain (3.10) from the improved vorticity
estimate in Proposition A.1. The proof is complete. �

4. The first critical field

Let us recall that, given a fixed ε > 0, the first critical field is defined as the value
Hc1 = Hc1(ε) such that if hex < Hc1 and (uε, Aε) is a minimizer of GLε then |uε| > 0
in Ω, while if hex > Hc1 and (uε, Aε) minimizes GLε then uε must vanish in Ω.

Before giving the proof of Theorem 1.3, let us state a well-known result.

Lemma 4.1. Let Γ be a multiplicity 1 rectifiable 1-current with ∂Γ = 0 relative to Ω.
There exist constants C1, ε1 > 0 such that, for any ε < ε1, there exists vε ∈ H1(Ω,C)
such that

Fε(vε, 0) ≤ π|Γ|(Ω)| log ε|+ C1

and

(4.1) ‖µ(vε, 0)− 2πΓ‖C0,1
0 (Ω)∗ = o(| log ε|−1).

We refer the reader to the proof of Theorem 1.1 (ii) in [ABO05, Section 4] for
a proof of this result. It is worth mentioning that the construction of vε relies on
the existence of a map provided in [ABO03, Theorem 5.10]. Let us also point out
that, arguing as in the proof of [JMS04, Proposition 3.2], one can replace the space
C0,1

0 (Ω)∗ by C0,1
T (Ω)∗ in the vorticity estimate (4.1). We will use this version of the

result in the following proof.

Proof of Theorem 1.3. Theorem 1.2 immediately implies that

H0
c1
−K0 log | log ε| ≤ Hc1 .

It remains to prove that Hc1 ≤ H0
c1

+ K1, for some constant K1 sufficiently large.
Given K > 0, let us assume towards a contradiction that hex = H0

c1
+K and (uε, Aε)

minimizes GLε in H1(Ω,C)× [Aex +Hcurl]
2 with |uε| > 0.

Step 1. Estimating GLε(uε, Aε). We write (uε, Aε) = (u0u
′
ε, hexA0 + A′ε), where

(u0, hexA0) is the approximation of the Meissner solution. Since |u′ε| = |uε| > 0,

2This in particular implies that (uε, Aε) satisfies the Ginzburg–Landau equations (GL) and

therefore uε is continuous.
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we deduce that the 1-dimensional current ν ′ε associated to (u′ε, A
′
ε) by Theorem 1.1

vanishes identically, and therefore, by taking n large enough, we have

‖µ(u′ε, A
′
ε)‖C0,1

T (Ω)∗ ≤
C

| log ε|2
.

The energy-splitting (3.5) then yields

GLε(uε, Aε) = h2
exJ(A0) + Fε(u

′
ε, A

′
ε) +

1

2

∫
R3\Ω
| curlA′ε|2 + o(| log ε|−1)

≥ h2
exJ(A0) + o(| log ε|−1).

But since (uε, Aε) minimizes GLε, we have

GLε(uε, Aε) ≤ GLε(u0, hexA0) = h2
exJ(A0).

Combining these inequalities, we find

GLε(uε, Aε) = h2
exJ(A0) + o(| log ε|−1).

Step 2. Definition of a vortex configuration. To reach a contradiction, we will
show that there exists a configuration (uε1, A

ε
1), whose vorticity concentrates along

the multiplicity 1 rectifiable 1-current Γ1 with ∂Γ1 = 0 relative to Ω that satisfies

(4.2) ‖B0‖∗ =
1

|Γ1|(Ω)

∫
Ω

Γ1 ∧B0,

such that if hex ≥ H0
c1

+ K then GLε(u
ε
1, A

ε
1) < GLε(uε, Aε), provided K ≥ K1 for

some constant K1 independent of ε.
Lemma 4.1 with Γ = Γ1 provides the existence of vε ∈ H1(Ω,C) such that

(4.3) Fε(vε, 0) ≤ π|Γ1|(Ω)| log ε|+ C1

for some constant C1 > 0 independent of ε, and

(4.4) ‖µ(vε, 0)− 2πΓ1‖C0,1
T (Ω)∗ = o(| log ε|−1).

Now, we let (uε1, A
ε
1) be defined by

uε1 = u0vε, Aε1 = hexA0.

Proposition 3.1 yields

(4.5) GLε(u
ε
1, A

ε
1) = h2

exJ(A0) + Fε(vε, 0)− hex

∫
Ω

µ(vε, 0) ∧B0 +R0.

From (4.2) and (4.4), we get∫
Ω

µ(vε, 0) ∧B0 = 2π‖B0‖∗|Γ1|(Ω) + o(| log ε|−1).

Inserting this and (4.3) into (4.5), we are led to

GLε(u
ε
1, A

ε
1) ≤ h2

exJ(A0)+π|Γ1|(Ω)| log ε|+C1−2π‖B0‖∗hex|Γ1|(Ω)+o(hex| log ε|−1).
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Step 3. Contradiction. Writing hex = H0
c1

+K with H0
c1

=
1

2‖B0‖∗
| log ε|, we get

GLε(u
ε
1, A

ε
1) ≤ h2

exJ(A0) + π|Γ1|(Ω)| log ε|+ C1 − π|Γ1|(Ω) (| log ε|+ 2‖B0‖∗K) + o(1)

= h2
exJ(A0) + C1 − 2π‖B0‖∗K|Γ1|(Ω) + o(1).

By choosing K1 := (2π‖B0‖∗|Γ1|(Ω))−1C1 + 1, we deduce that, for any K ≥ K1,

GLε(u
ε
1, A

ε
1) ≤ h2

exJ(A0)− 1 + o(1) < GLε(uε, Aε).

Therefore, provided K ≥ K1, this contradicts the fact that (uε, Aε) globally mini-
mizes GLε. Thus

Hc1 ≤ H0
c1

+K1.

�

Remark 4.1. The isoperimetric inequality allows to prove that if Γ ∈ X has small

length then the ratio

∫
Ω

Γ ∧B0

|Γ|(Ω)
is small.

Indeed, if Γ is a loop contained in Ω then, by Stokes’ theorem, we have∫
Ω

Γ ∧B0 =

∫
SΓ

curlB0,

where SΓ denotes a surface with least area among those whose boundary is Γ, i.e.
a solution to the associated Plateau’s problem. By the isoperimetric inequality, we
have ∫

SΓ

| curlB0| ≤ ‖ curlB0‖L∞(Ω,R3)Area(SΓ) ≤ C|Γ|(Ω)2.

On the other hand, if both different endpoints of Γ belong to ∂Ω, we consider the
geodesic connecting the endpoints of Γ on ∂Ω, oriented accordingly to the orientation
of Γ. We then denote by Γ̃ the loop formed by the union of Γ and this geodesic. Since
B0 × ν = 0 on ∂Ω, by Stokes’ theorem, we have∫

Ω

Γ ∧B0 =

∫
SΓ

curlB0,

where SΓ denotes a surface with least area among those whose boundary is Γ̃. Arguing
as above, we conclude that∫

SΓ

| curlB0| ≤ ‖ curlB0‖L∞(Ω,R3)Area(SΓ) ≤ CLength(Γ̃)2 ≤ C(∂Ω)|Γ|(Ω)2.

Therefore,
1

|Γ|(Ω)

∫
Ω

|Γ ∧B0| ≤ C|Γ|(Ω),

from which the assertion follows.
Moreover, this property extends to the class of multiplicity 1 rectifiable 1-currents

Γ with ∂Γ = 0 relative to Ω, since the action of a 1-current in this class on a vector
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field can be seen as oriented integration over a countable family of Lipschitz curves
in X. In particular, since ‖B0‖∗ > 0, we deduce that |Γ1|(Ω) ≥ C > 0, where Γ1 is
the 1-current that appears in the statement of Theorem 1.3 and C is a constant that
depends on B0 and Ω only.

Let us now study ‖B0‖∗ in a special case.

Proposition 4.1. Consider the special case Ω = B(0, R) and H0,ex = ẑ in B(0, R).
Then, if S1 denotes the vertical diameter seen as a 1-current with multiplicity 1 and
oriented in the direction of positive z axis, we have

‖B0‖∗ =
1

|S1|(Ω)

∫
Ω

S1∧B0 =
1

2R

∫ R

−R
B0(0, 0, z)·ẑdz =

3

2

(
1− 1

sinhR

∫ R

0

sinh r

r
dr

)
.

Moreover, S1 is the only curve in X achieving the maximum in (1.3).

Proof. We use some ideas from [ABM06].

Step 1. Explicit computation of B0. When Ω = B(0, R) and H0,ex = ẑ in
B(0, R), the solution to (3.4) can be explicitly computed (see [Lon50]). By using
spherical coordinates (r, θ, φ), where r is the Euclidean distance from the origin, θ
is the azimuthal angle, and φ is the polar angle, we have

B0 = − 3R

r2 sinhR

(
cosh r − sinh r

r

)
cosφr̂− 3R

2r2 sinhR

(
cosh r − 1 + r2

r
sinh r

)
sinφφ̂−cẑ,

where c =
3

2R sinhR

(
coshR− 1 +R2

R
sinhR

)
. In particular, we observe that B0

does not depend on the azimuthal angle and therefore it is constant along θ̂.

Step 2. Dimension reduction. Let Γ ∈ X with
∫
B(0,R)

Γ∧B0 > 0. We will project

it along the azimuthal angle onto B(0, R)2D,+ := {(x, z) ∈ R2 | x2+z2 < R2, x ≥ 0}.
For this, we consider the map q : B(0, R) ⊂ R3 → B(0, R)2D,+ defined by

q(r, θ, φ) = (r sinφ, r cosφ),

and we let
Γ2D := q ◦ Γ.

It is easy to check that ∂Γ2D = 0 relative to B(0, R)2D,∫
B(0,R)

Γ ∧B0 =

∫
B(0,R)2D,+

Γ2D ∧B0, and |Γ2D|(B(0, R)2D,+) ≤ |Γ|(B(0, R)).

Therefore
1

|Γ|(Ω)

∫
B(0,R)

Γ ∧B0 ≤
1

|Γ2D|(Ω)

∫
B(0,R)2D,+

Γ2D ∧B0.

Even though Γ2D does not necessarily belong to X, we can decompose

Γ2D =
∑
i∈I

Γi,
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where the sum is understood in the sense of currents, I is a finite set of indices, and
Γi ∈ X for all i ∈ I. In particular,∫

B(0,R)2D,+

Γ2D ∧B0 ≤
∑
i∈I

|Γi|(B(0, R)2D,+)‖B0‖∗ = |Γ2D|(B(0, R)2D,+)‖B0‖∗.

We deduce that in order to compute ‖B0‖∗ it is enough to consider Lipschitz curves
Γ ∈ X contained in B(0, R)2D,+ with

∫
B(0,R)

Γ ∧ B0 > 0. From now on we consider

Γ of this form.

Step 3. Application of Stokes’ theorem. If Γ has both endpoints on ∂B(0, R)∩
∂B(0, R)2D,+, we then define Γ̃ as the loop formed by the union of Γ and the curve
lying on ∂B(0, R)∩∂B(0, R)2D,+ which connects the endpoints of Γ oriented accord-
ingly to the orientation of Γ. Since B0 × ν = 0 on ∂B(0, R), the Stokes’ theorem
yields

(4.6)

∫
B(0,R)2D,+

Γ ∧B0 =

∫
B(0,R)2D,+

Γ̃ ∧B0 =

∫
SΓ

curlB0 · ŷ,

where SΓ is the surface enclosed by Γ̃. Of course if Γ is a loop contained in
B(0, R)2D,+ then the Stokes’ theorem gives∫

B(0,R)2D,+

Γ ∧B0 =

∫
SΓ

curlB0 · ŷ,

where SΓ is the surface enclosed by Γ.
An explicit computation gives

(4.7) curlB0 · ŷ =
3R

2 sinhR

(
cosh r − sinh r

r

)
sinφ

r
≥ 0 in B(0, R)2D,+.

In what follows we use the notation

f(r) :=
3R

2 sinhR

(
cosh r − sinh r

r

)
.

Step 4. Estimate for curves with endpoints on ∂B(0, R)∩ ∂B(0, R)2D,+. For
a, b ∈ [0, π] with a < π − b let us define

Sa,b := {(r, φ) | 0 ≤ r ≤ R, a ≤ φ ≤ π − b}.

We let φ1, φ2 be the maximum angles for which SΓ ⊂ Sφ1,φ2 . From (4.6) and (4.7),
we deduce that∫

B(0,R)2D,+

Γ ∧B0 ≤
∫
Sφ1,φ2

curlB0 · ŷ =

∫ R

0

∫ π−φ2

φ1

f(r) sinφdφdr

= (cosφ1 + cosφ2)

∫ R

0

f(r)dr.
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On the other hand, by definition of φ1, φ2, SΓ intersects the rays {(r, φ1) | 0 ≤ r ≤
R} and {(r, φ2) | 0 ≤ r ≤ R}. Since the endpoints of Γ belong to ∂B(0, R) ∩
∂B(0, R)2D,+, a simple geometric argument shows that

|Γ|(B(0, R)2D,+) ≥ d((R, φ1), (R, φ2)).

The law of cosines yields d((R, φ1), (R, φ2)) = R
√

2(1− cos(π − φ1 − φ2)). Hence

1

|Γ|(B(0, R)2D,+)

∫
B(0,R)2D,+

Γ ∧B0 ≤
cosφ1 + cosφ2√

2(1− cos(π − φ1 − φ2))

∫ R
0
f(r)dr

R
.

We now estimate the right-hand side of this inequality. Let us observe that

cosφ1 + cosφ2 = 2 cos

(
φ1 + φ2

2

)
cos

(
φ1 − φ2

2

)
and

cos(π−φ1−φ2) = cos(φ1+φ2) = cos2

(
φ1 + φ2

2

)
−sin2

(
φ1 + φ2

2

)
= 2 cos2

(
φ1 + φ2

2

)
−1.

Using 0 ≤ φ1+φ2

2
< π

2
, we deduce that

cosφ1 + cosφ2√
2(1− cos(π − φ1 − φ2))

= cos

(
φ1 − φ2

2

)
≤ 1,

with equality if and only if φ1 = φ2. Therefore

1

|Γ|(B(0, R)2D,+)

∫
B(0,R)2D,+

Γ ∧B0 ≤
∫ R

0
f(r)dr

R
=

3

2

(
1− 1

sinhR

∫ R

0

sinh r

r
dr

)
=

1

2R

∫
B(0,R)

S1 ∧B0.

Besides, from the previous computations we easily deduce that the inequality is
strict if Γ 6= S1.

Step 5. Estimate for loops in B(0, R)2D,+. Let us define 0 < r0 < R as the
minimum radius such that

SΓ ⊂ B(0, r0)2D,+.

In particular, SΓ ∩ (∂B(0, r0) ∩ ∂B(0, r0)2D,+) 6= ∅. We can then use the estimate
provided in the previous step and conclude that

1

|Γ|(B(0, R)2D,+)

∫
B(0,R)2D,+

Γ ∧B0 ≤
3

2

(
1− 1

sinh r0

∫ r0

0

sinh r

r
dr

)
.
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One can check that the function t → 1

sinh t

∫ t

0

sinh r

r
dr is strictly decreasing in

[0,∞) and therefore

1

|Γ|(B(0, R)2D,+)

∫
B(0,R)2D,+

Γ ∧B0 <
3

2

(
1− 1

sinhR

∫ R

0

sinh r

r
dr

)
.

This concludes the proof of the proposition. �

5. A Meissner-type solution beyond the first critical field

In this section, we present the proof of Theorem 1.4.

Proof. Step 1. Existence of a locally minimizing vortexless configuration.
Let us introduce the set

U =
{

(u,A) ∈ H1(Ω,C)× [Aex +Hcurl] | Fε(u′, A′) < ε
2
3

}
,

where u′ = u−1
0 u and A′ = A−hexA0. Consider a minimizing sequence {(ũn, Ãn)}n ∈

U . Lemma 2.1 yields a gauge transformed sequence {(un, An)}n ∈ H1(Ω,C)× [Aex +

Ḣ1
div=0] that, in particular, satisfies Fε(u

′
n, A

′
n) = Fε(ũ

′
n, Ã

′
n) < ε

2
3 . Then arguing as

in Proposition 2.2, we deduce that (up to subsequence) {(un, An−Aex)}n converges
to some (u,A−Aex) weakly in H1(Ω,C)× Ḣ1

div=0. Arguing again as in Proposition
2.2, we find

Fε(u
′, A′) ≤ lim inf

n
Fε(u

′
n, A

′
n) and GLε(u,A) ≤ lim inf

n
GLε(un, An).

Hence, (u,A) ∈ U ∩H1(Ω,C)× [Aex + Ḣ1
div=0] minimizes GLε over U .

Let us now prove that (u,A) ∈ U . We consider, for δ = δ(ε) = c1ε
1
3 and ε

sufficiently small, the grid G(bε, R0, δ) associated to (u′, A′) by [Rom19, Lemma 2.1]
with γ = −2

3
. In particular, using the same notation as in this lemma, we have

|uε| > 5/8 on R1(G(bε, R0, δ)),

I1
ε :=

∫
R1(G(bε,R0,δ))

eε(u
′, A′)dH1 ≤ Cδ−2Fε(u

′, A′) ≤ Cε−
2
3 ε

2
3 ,

I2
ε :=

∫
R2(G(bε,R0,δ))

eε(u
′, A′)dH2 ≤ Cδ−1Fε(u

′, A′) ≤ Cε−
1
3 ε

2
3 ,(5.1)

where C is a universal constant.
We claim that if ε is small enough then for each face ω of a cube of the grid,

every connected component of {x ∈ ω | |u′(x)| ≤ 1/2} has degree zero. Assume
towards a contradiction that there exist a face ω and a connected component Sω of
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{x ∈ ω | |u′(x)| ≤ 1/2} whose degree dSω = deg(u′/|u′|, ∂Sω) is different from zero.
By [Rom19, Lemma 4.1], a result adapted from [Jer99], we have

|dSω | ≤ C

∫
Sω

|∇A′u
′|2,

where C is a universal constant. Combining this with (5.1), we get

|dSω | ≤ CI2
ε ≤ Cε

1
3 ,

and therefore if ε is sufficiently small we reach a contradiction.
We thus deduce that the 1-current ν ′ε, which approximates well the vorticity

µ(u′, A′), vanishes identically in Ω. Then, from the proof of Theorem 1.1 (see
[Rom19, Section 8]), we find

‖µ(u′, A′)‖C0,1
T (Ω)∗ ≤ CδFε(u

′, A′) + Cε(1 + I1
ε + I2

ε ) ≤ C(δ + εδ−2)Fε(u
′, A′).

Let us now use Proposition 3.1. From the previous inequality and since α < 1
3
, we

have

(5.2)

∣∣∣∣hex

∫
Ω

µ(u′, A′) ∧B0

∣∣∣∣ ≤ Chex(δ+εδ−2)Fε(u
′, A′) ≤ Cε

1
3
−αFε(u

′, A′) = o(ε
2
3 ).

On the other hand

R0 ≤ Cεh2
exEε(|u′|)

1
2 ≤ Cεh2

exFε(u
′, A′)

1
2 ≤ Cε1−2αε

1
3 = o(ε

2
3 ).

The energy-splitting (3.5) then yields

GLε(u,A) = h2
exJ(A0) + Fε(u

′, A′) +
1

2

∫
R3\Ω
| curlA′|2 + o(ε

2
3 ).

But, since (u0, hexA0) belongs to U , we have

GLε(u,A) ≤ GLε(u0, hexA0) = h2
exJ(A0).

We thus deduce that

(5.3) Fε(u
′, A′) +

1

2

∫
R3\Ω
| curlA′|2 = o(ε

2
3 ),

and therefore (u,A) ∈ U provided ε is small enough.

Now, since U is open in H1(Ω,C) × [Aex + Hcurl], the minimizer (u,A) must
be a critical point of GLε and therefore satisfies the Ginzburg–Landau equations
(GL). Arguing as in the proof of Theorem 1.2, we deduce that (u,A) is a vortexless
configuration such that

‖1− |u|‖L∞(Ω,C) = ‖1− |u′|‖L∞(Ω,C) = o(1) as ε→ 0.

We note that we have omitted in our notation the dependence on ε of the mini-
mizer (u,A).
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Step 2. Characterization of (u′, A′). From (5.3), we have ‖ curlA′‖2
L2(R3,R3) =

o(ε
2
3 ), which combined with the fact that A′ = A− hexA0 ∈ Ḣ1

div=0 implies that

‖A′‖2
Ḣ1

div=0
= o(ε

2
3 ).

Observe that ∫
Ω

|∇u′|2 ≤
∫

Ω

|∇A′u
′|2 + |A′|2|u′|2.

Since ‖1 − |u′|‖L∞(Ω,C) = o(1) as ε → 0 and ‖A′‖L2(Ω,R3) ≤ C‖ curlA′‖L2(R3,R3), we
deduce that ∫

Ω

|∇u′|2 ≤ C

(
Fε(u

′, A′) +
1

2

∫
R3\Ω
| curlA′|2

)
,

which combined with (5.3), gives

(5.4)

∫
Ω

|∇u′|2 = o(ε
2
3 ).

On the other hand, using the Poincaré-Wirtinger inequality, we have

(5.5)

∫
Ω

|u′ − u′|2 ≤ C

∫
Ω

|∇u′|2, where u′ =
1

|Ω|

∫
Ω

u′.

In addition, we have ∫
Ω

∣∣|u′| − |u′|∣∣2 ≤ ∫
Ω

|u′ − u′|2

and ∫
Ω

(1− |u′|)2 ≤
∫

Ω

(1− |u′|2)2 ≤ 4ε2Fε(u
′, A′) ≤ 4ε2+ 2

3 .

We deduce that ‖1 − |u′|‖L2(Ω,C) ≤ Cε1+ 1
3 . But u′ is a constant, thus u′ = eiθε +

O(ε1+ 1
3 ) for some θε ∈ [0, 2π]. By combining with (5.5) and (5.4), we find

(5.6)

∫
Ω

|u′ − eiθε|2 = o(ε
2
3 ).

Thus

(5.7) inf
θ∈[0,2π]

‖u′ − eiθ‖H1(Ω,C) → 0 as ε→ 0.

In particular, by noting that (eiθ, hex curlB0) is gauge equivalent to (1, hex curlB0)
in Ω for any θ ∈ [0, 2π], we deduce that (up a gauge transformation) the configuration
(u′, A′ + hex curlB0), which is gauge equivalent to (u,A) in Ω, converges in the
H1(Ω,C)×H1(Ω,R3)-norm to (1, hex curlB0).

Step 3. (u,A) globally approaches (u0, hexA0). Observe that, for any θ ∈ [0, 2π],
we have ∫

Ω

|u− eiθu0|2 =

∫
Ω

|u′u0 − eiθu0|2 =

∫
Ω

|u′ − eiθ|2
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and ∫
Ω

|∇(u− eiθu0)|2 ≤
∫

Ω

|∇u0|2|u′ − eiθ|2 +

∫
Ω

|∇u′|2.

From (5.7), we deduce that

inf
θ∈[0,2π]

‖u− eiθu0‖L2(Ω,C) → 0 as ε→ 0.

Recall that u0 = eihexφ0 and that A0 satisfies the Euler-Lagrange equation (3.3).
Since curl(H0 − H0,ex) = curl2(A0 − A0,ex) = −∆(A0 − A0,ex), standard elliptic
regularity theory implies that φ0 = A0 − curlB0 ∈ L∞(Ω). Therefore∫

Ω

|∇u0|2|u′ − eiθ|2 ≤ h2
ex‖∇φ0‖2

L∞(Ω)‖u′ − eiθ‖2
L2(Ω,C).

This combined with (5.6) for θ = θε, yields∫
Ω

|∇u0|2|u′ − eiθε |2 = o(ε−2αε
2
3 ).

Since α < 1
3
, the right-hand side converges to 0 as ε → 0. Using once again (5.7),

we obtain

inf
θ∈[0,2π]

∫
Ω

|∇(u− eiθu0)|2 → 0 as ε→ 0.

Hence

inf
θ∈[0,2π]

‖u− eiθu0‖H1(Ω,C) → 0 as ε→ 0.

Besides, we have

‖A− hexA0‖Ḣ1
div=0

= ‖A′‖Ḣ1
div=0
→ 0 as ε→ 0.

We have hence shown that, up to a gauge transformation in R3, the solution
(u,A) converges in the H1(Ω,C) × Ḣ1

div=0-norm to (u0, hexA0). In addition, up to
a (different) gauge transformation in Ω, the solution approaches in the H1(Ω,C)×
H1(Ω,R3)-norm the configuration (1, hex curlB0). �

Remark 5.1. The assumption hex ≤ ε−α for α < 1
3

is needed to prove that∣∣∣∣hex

∫
Ω

µ(u′, A′) ∧B0

∣∣∣∣ ≤ o(Fε(u
′, A′));

see (5.2). If α ≥ 1
3
, we are not able to show this, and our strategy to prove that

(u,A) ∈ U then fails.
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6. Uniqueness of locally minimizing vortexless configurations

In this section we prove Theorem 1.5. We follow the same strategy as in [Ser99b,
Section 2].

Proof. First, let us observe that any pair (ṽ, B̃) ∈ H1(Ω,C)× [Aex +Hcurl] is gauge-
equivalent to a pair (v,B) ∈ H1(Ω,C)× [Aex +Hcurl] that satisfies

(6.1)

{
divB = 0 in Ω
B · ν = 0 on ∂Ω.

Indeed, by letting

v = e−iϕṽ and B := B̃ −∇ϕ,
where ϕ satisfies {

∆ϕ = div B̃ in Ω

∇ϕ · ν = B̃ · ν on ∂Ω

and is extended to a function in H2(R3), we immediately verify that B satisfies
(6.1). We say that (v,B) is in the Coulomb gauge.

Let us assume towards a contradiction that there are two distinct locally mini-
mizing vortexless solutions (uj, Aj) = (u0u

′
j, hexA0 + A′j) to (GL) with (uj, Aj) ∈

H1(Ω,C)× [Aex +Hcurl], |uj| ≥ c for some c ∈ (0, 1), and

Fε(u
′
j, A

′
j) ≤ Cε1+δ for j = 1, 2,

for some δ > 0. As we shall see, this estimate is crucial to prove the theorem.
By gauge invariance, we may assume that (u′j, A

′
j) is in the Coulomb gauge for

j = 1, 2. Since |u′j| = |uj| ≥ c > 0, we can write u′j = ηje
iφj in Ω for j = 1, 2.

Note that the functions φ0, φ1, φ2 ∈ H2(Ω) can be extended to functions in H2(R3).
Therefore, for j = 1, 2, (uj, Aj) is gauge equivalent to (ηj, Ãj) with

Ãj = hex(A0 −∇φ0) + A′j −∇φj.

Step 1. Estimating ‖Ãj‖L∞(Ω,R3). Let us show that, for j = 1, 2, we have

(6.2) ‖Ãj‖L∞(Ω,R3) ≤ o(ε−1).

By gauge equivalence, (u′j, hex(A0−∇φ0)+A′j) solves (GL). We observe that this pair
is in the Coulomb gauge. Then, by standard elliptic regularity theory for solutions
of the Ginzburg–Landau equations in the Coulomb gauge, we have

‖hex curlB0 + A′j‖L∞(Ω,R3) ≤ Chex and ‖∇u′j‖L∞(Ω,C3) ≤ Cε−1.

Since

(6.3) ‖∇ηj‖L∞(Ω,R3) + ‖∇φj‖L∞(Ω,R3) ≤ 2‖∇u′j‖L∞(Ω,C3),

and hex = o(ε−1), we find

(6.4) ‖Ãj‖L∞(Ω,R3) ≤ ‖hex curlB0 + A′j‖L∞(Ω,R3) + ‖∇φj‖L∞(Ω,R3) ≤ Cε−1.
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We will now improve this estimate. By gauge equivalence, (ηj, Ãj) solves (GL). In
particular, the second Ginzburg–Landau equation in Ω reads

curl2(Ãj − Aex) = −η2
j Ãj.

This implies that div(η2
j Ãj) = 0 in Ω. In addition, the boundary condition ∇Ãj

ηj ·
ν = 0 on ∂Ω, implies, in particular, that ∇φj · ν = 0 on ∂Ω. Therefore, φj satisfies
the elliptic problem  ∆φj =

2

ηj
∇ηj · Ãj in Ω

∇φj · ν = 0 on ∂Ω.

Because ηj ≥ c > 0, we deduce that, for any p > 1,

(6.5) ‖∆φj‖Lp(Ω) ≤ C‖Ãj‖L∞(Ω,R3)‖∇ηj‖Lp(Ω,R3) ≤ Cε−1‖∇ηj‖Lp(Ω,R3),

where the last inequality is obtained by using (6.4).
On the other hand, since A′j · ν = 0 on ∂Ω, we have

‖∇u′j‖2
L2(Ω,C3), ‖A′j‖2

L2(Ω,R3) ≤ CFε(u
′
j, A

′
j) ≤ Cε1+δ.

This implies that ∫
Ω

|∇ηj|2 + η2
j |∇φj|2 =

∫
Ω

|∇u′j|2 ≤ Cε1+δ.

In addition, by interpolation, for any p > 1, we have

‖∇ηj‖Lp(Ω,R3) ≤ C‖∇ηj‖
1− 2

p

L∞(Ω,R3)‖∇ηj‖
2
p

L2(Ω,R3).

Combining the previous two inequalities with (6.3), yields

‖∇ηj‖Lp(Ω,R3) ≤ Cε−1+ 2
p ε

1+δ
p = Cε

3+δ−p
p .

Combining with (6.5) for p = 3 + δ
2
> 3, we find

‖∆φj‖Lp(Ω) ≤ Cε−1ε
δ

6+δ = o(ε−1).

By an elliptic estimate and Sobolev embedding, we then obtain

‖∇φj‖L∞(Ω,R3) ≤ o(ε−1).

Thus

‖Ãj‖L∞(Ω,R3) ≤ ‖hex curlB0 +A′j‖L∞(Ω,R3) +‖∇φj‖L∞(Ω,R3) ≤ Chex +o(ε−1) = o(ε−1).

Step 2. Energy estimate. Let us prove that

Y :=
GLε(η1, Ã1) +GLε(η2, Ã2)

2
−GLε

(
η1 + η2

2
,
Ã1 + Ã2

2

)
> 0.
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First, observe that ∫
Ω

|∇Ãj
ηj|2 =

∫
Ω

|∇ηj|2 + η2
j |Ãj|2.

We write Y = Y0 + Y1 + Y2 + Y3 with

Y0 =
1

2

∫
Ω

|∇η1|2 + |∇η2|2 −
∫

Ω

∣∣∣∣∇(η1 + η2

2

)∣∣∣∣2 ,
Y1 =

1

2

∫
Ω

η2
1|Ã1|2 + η2

2|Ã2|2 −
∫

Ω

(
η1 + η2

2

)2
∣∣∣∣∣Ã1 + Ã2

2

∣∣∣∣∣
2

,

Y2 =
1

2

(
1

4ε2

∫
Ω

(1− η2
1)2 + (1− η2

2)2

)
− 1

4ε2

∫
Ω

(
1−

(
η1 + η2

2

)2
)2

,

Y3 =
1

2

∫
R3

| curl Ã1 −Hex|2 + | curl Ã2 −Hex|2 −
∫
R3

∣∣∣∣∣curl

(
Ã1 + Ã2

2

)
−Hex

∣∣∣∣∣
2

.

Note that, by convexity, we have Y0, Y3 ≥ 0.
On the other hand, arguing exactly as in the proof of [Ser99b, Lemma 2.5], we

get

Y1 =
1

16

∫
Ω

|η1 − η2|2|Ã1 + Ã2|2 + 4η2
1|Ã1 − Ã2|2

− (η1 − η2)(Ã1 − Ã2) ·
(
Ã1(2η1 + 4η2) + Ã2(6η1 + 8η2)

)
and

Y2 ≥
3

64ε2

∫
Ω

(η1 − η2)2.

Let us prove that Y1 + Y2 > 0. We consider three cases.

• If η1 = η2 then

Y1 + Y2 ≥
∫

Ω

4η2
1|Ã1 − Ã2|2 > 0.

• If Ã1 = Ã2 then Y1 ≥ 0. Therefore

Y1 + Y2 ≥ Y2 ≥
3

64ε2

∫
Ω

(η1 − η2)2 > 0.

• If η1 6= η2 and Ã1 6= Ã2 then

Y1 ≥
1

16

∫
Ω

|η1− η2|2|Ã1 + Ã2|2 + 4η2
1

∣∣∣Ã1 − Ã2

∣∣∣2−|η1− η2||Ã1− Ã2|(6|Ã1|+ 14|Ã2|).
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By the Cauchy-Schwarz inequality, we have∫
Ω

|η1 − η2||Ã1 − Ã2|(6|Ã1|+ 14|Ã2|)

≤ 14(‖Ã1‖L∞(Ω,R3) + ‖Ã2‖L∞(Ω,R3))‖η1 − η2‖L2(Ω)‖Ã1 − Ã2‖L2(Ω,R3),

which combined with (6.2), yields∫
Ω

|η1 − η2||Ã1 − Ã2|(6|Ã1|+ 14|Ã2|) ≤ o(ε−1)‖η1 − η2‖L2(Ω)‖Ã1 − Ã2‖L2(Ω,R3).

On the other hand,∫
Ω

1

4
η2

1|Ã1 − Ã2|2 +
3

64ε2
(η1 − η2)2 ≥ 9

32ε
‖η1 − η2‖L2(Ω)‖Ã1 − Ã2‖L2(Ω,R3).

Hence, if ε is small enough then Y1 + Y2 > 0.

We have thus proved that Y > 0.

Step 3. Contradiction. Assume without loss of generality that

GLε(η1, Ã1) ≤ GLε(η2, Ã2).

From the previous step, we have

GLε

(
η1 + η2

2
,
Ã1 + Ã2

2

)
<
GLε(η1, Ã1) +GLε(η2, Ã2)

2
≤ GLε(η2, Ã2).

A standard argument then shows that, for any t ∈ (0, 1),

GLε

(
tη1 + (1− t)η2, tÃ1 + (1− t)Ã2

)
< GLε(η2, Ã2),

contradicting the fact that (η2, Ã2) is a local minimizer of the energy. Hence
(η1, Ã1) = (η2, Ã2). This concludes the proof. �

Appendix A. Improved estimates for locally minimizing vortexless
configurations

Proposition A.1. Let (u,A) ∈ H1(Ω,C)×H1(Ω,R3) with u continuous and |u| ≥ c
for some c ∈ (0, 1). Then

‖µ(u,A)‖C0,1
T (Ω,R3)∗ ≤ CεFε(u,A).

Proof. Let ϕ ∈ C0,1
T (Ω,R3). By integration by parts, we have∫

Ω

µ(u,A) ∧ ϕ =

∫
Ω

(j(u,A) + A) · curlϕ.

Since |u| ≥ c > 0, we can write u = |u|eiφ. A straightforward computation, shows
that

j(u,A) + A = |u|2∇φ+ (1− |u|2)A = (1− |u|2)(A−∇φ) +∇φ.
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Observe that, by integration by parts, we have
∫

Ω
∇φ · curlϕ = 0. Then, from the

Cauchy-Schwarz inequality, we deduce that∣∣∣∣∫
Ω

(j(u,A) + A) · curlϕ

∣∣∣∣ ≤ ∫
Ω

(1−|u|2)|A−∇φ|| curlϕ| ≤ C‖ curlϕ‖L∞(Ω,R3)εFε(u,A).

Hence

‖µ(u,A)‖C0,1
T (Ω,R3)∗ ≤ CεFε(u,A).

�

With this estimate at hand, we prove the following result.

Proposition A.2. Denote (u0, hexA0) the approximation of the Meissner solution.
Let (u,A) = (u0u

′, hexA0 + A′) ∈ H1(Ω,C) × [Aex + Hcurl] with u continuous and
|u| ≥ c for some c ∈ (0, 1). If hex ≤ ε−α for some α ∈

(
0, 1

4

)
and GLε(u,A) ≤

GLε(u0, hexA0) then, for any ε sufficiently small, we have

Fε(u
′, A′) +

1

2

∫
R3\Ω
| curlA′|2 ≤ Cε1+δ

for some δ ∈ (0, 1).

Proof. Let us first observe that, since GLε(u,A) ≤ GLε(u0, hexA0) = h2
exJ(A0), we

have

(A.1) Fε(u
′, A′) ≤ Ch2

ex ≤ Cε−2α

for some constant C > 0. We will now use Proposition (3.1) to improve this estimate.
By combining (3.5) with GLε(u,A) ≤ GLε(u0, hexA0), we find

Fε(u
′, A′) +

1

2

∫
R3\Ω
| curlA′|2 ≤ hex

∫
Ω

µ(u′, A′) ∧B0 + Cεh2
exEε(|u′|)

1
2 .

From Proposition A.1, Eε(|u′|) ≤ Fε(u
′, A′), and (A.1), we deduce that

Fε(u
′, A′)+

1

2

∫
R3\Ω
| curlA′|2 ≤ CεhexFε(u

′, A′)+Cεh2
exFε(u

′, A′)
1
2 ≤ Cεh2

exFε(u
′, A′)

1
2 .

Thus (
Fε(u

′, A′) +
1

2

∫
R3\Ω
| curlA′|2

) 1
2

≤ Cεh2
ex.

Combining with hex ≤ ε−α, we find

Fε(u
′, A′) +

1

2

∫
R3\Ω
| curlA′|2 ≤ Cε1+δ

with δ = 1− 4α > 0. �

As a consequence, from Theorem 1.5, we obtain the uniqueness of the Meissner-
type solution of Theorem 1.4 for α < 1

4
.
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